Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220378, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368934

RESUMO

Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Endocitose/fisiologia , Endossomos , Neurônios
2.
Cell Rep ; 42(8): 112994, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37611586

RESUMO

SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor ß (TGF-ß)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.


Assuntos
Doença de Alzheimer , Clusterina , Humanos , Clusterina/genética , Doença de Alzheimer/genética , Neurônios , Processos de Crescimento Celular , Apolipoproteínas E/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras
3.
bioRxiv ; 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36865313

RESUMO

SORL1 is strongly implicated in the pathogenesis of Alzheimer's disease (AD) through human genetic studies that point to an association of reduced SORL1 levels with higher risk for AD. To interrogate the role(s) of SORL1 in human brain cells, SORL1 null iPSCs were generated, followed by differentiation to neuron, astrocyte, microglia, and endothelial cell fates. Loss of SORL1 led to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. Intriguingly, SORL1 loss led to a dramatic neuron-specific reduction in APOE levels. Further, analyses of iPSCs derived from a human aging cohort revealed a neuron-specific linear correlation between SORL1 and APOE RNA and protein levels, a finding validated in human post-mortem brain. Pathway analysis implicated intracellular transport pathways and TGF- ß/SMAD signaling in the function of SORL1 in neurons. In accord, enhancement of retromer-mediated trafficking and autophagy rescued elevated phospho-tau observed in SORL1 null neurons but did not rescue APOE levels, suggesting that these phenotypes are separable. Stimulation and inhibition of SMAD signaling modulated APOE RNA levels in a SORL1-dependent manner. These studies provide a mechanistic link between two of the strongest genetic risk factors for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...